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The modification of the algorithms of the calculus of variations and Pontryagin’s maximum principle required for them to be 
applicable to non-linear descriptor control systems is demonstrated. The classical calculus of variations is still applicable in 
optimization without constraints on the control, but when such constraints are imposed, the application of Pontryagin’s maximum 
principle in its standard or extended form requires a distinction to be made between proper and non-proper descriptor systems. 
In the non-proper case, the solution depends on higher-order time derivatives of the control inputs. For the correct description 
of the problem and for Pontryagin’s maximum principle to be applicable additional phase variables and corresponding integrator 
chains have to be introduced. The optimal control thus obtained becomes dynamic. To simplify the notation, the index of the 
algebraic equations of the constraints is assumed to be uniform. In principle, the results remain valid for a non-uniform index 
also, i.e. when different constraint equations have different indices and different components of the control occur with different 
maximum orders of the time derivatives. The results are somewhat complicated, particularly in the case of constrained optimization 
of non-proper systems. 0 2002 Elsevier Science Ltd. All rights reserved. 

Algorithms for constructing the optimal control in the calculus of variations and in Pontryagin’s maximum 
principle will be extended here to descriptor control systems (DS), described by systems of ordinary 
differential and algebraic equations. An important role is played in that context by the concepts of 
“proper” and “non-proper” DS, namely, those whose behaviour depends only on the control inputs 
and those which also involve higher-order time derivatives of the control inputs. In the case of non- 
proper systems, the formulation of the optimal control problem must be modified. 

Discussion of DS originated in 1977 with the fundamental paper [l]. Since that time, considerable 
progress has been made in investigating such systems (see surveys, [2,3] for linear DS, the first results 
for non-linear DS in [4-61, the first attempts to construct optimal controls in [7, 81, and an analysis of 
the linear-quadratic optimal regulator for DS in [9], as well as the latest theoretical publications on 
optimal control problems with phase constraints [lo-121. In most of the publications, however, con- 
siderable restrictions on the type of control problem have been introduced to obtain the necessary 
optimum conditions. These restrictions are sometimes not realized in practical, real-life problems. A 
correct solution is only possible if allowance is made for differences between proper and non-proper 
DS, as we have in [13,14] when constructing linear-quadratic optimal controls for linear DS. This paper 
will discuss the special features of the construction of the optimal control for non-linear DS, in relation 
to proper and non-proper systems behaviour. 

1. FORMULATION OF THE PROBLEM AND DIFFERENT 
REPRESENTATIONS OF THE SYSTEM 

A controlled time-invariant finite-dimensional DS is described by the differential-algebraic equations 

x1 =f,(x,,x,,u) (1.1) 

0 = f*(x,,x,,u) (1.2) 
where Xi, fi (i = 1,2) are ni-dimensional vectors (ni + nz = n) and u E U is the r-dimensional control 
input vector. 

The optimal control problem for a non-linear DS is to construct a control that will minimize the 
functional (performance criterion) 
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J = i fo(x,,xz,u)df * min (1.3) 
0 

where u(t) belongs to a set of bounded or unbounded control functions. In addition, the construction 
of an optimal control requires the introduction of boundary conditions, whether these are given as 
geometric relations or dynamic boundary conditions established during the actual solution of the 
optimization problem. In either case they must be compatible with algebraic equations (1.2). Since the 
use of boundary conditions for constructing optimal controls in a DS is no different from the usual rules 
for constructing optimal controls, boundary conditions will not be explicitly considered in what follows. 

Only general principles governing the correct formulation of optimal control problems for non-linear 
DS will be considered; to simplify the notation, moreover, it will be assumed that algebraic equations 
(1.2) have a uniform index (i.e. all the equations have the same index). 

For accurate investigation of DS, it is useful to bear in mind the different possible representations 
of a dynamical system (l.l)-(1.3), obtained either by constructing a differential equation for x2 by 
repeated differentiation of algebraic equations (1.2), or by eliminating redundant coordinates and 
deriving a differential equation in phase space. In either case, a key role is played by the index of 
the system, that is, the number k of differentiations of algebraic equations (1.2) needed to derive 
the underlying set of ordinary differential equations. Let us assume that fl and f2 are, respectively, 
k - 1 and k times continuously differentiable functions, and consider, together with f2, its total derivatives 
with respect to time f2, f2, . . . , fy-‘), fi” along trajectories of system (1.1). It is assumed that in 
the case of a uniform index k the functions f2, fz, . . . , ff-“’ depend on x1 but not on x2, and the first 
function to depend on x2 is f, (k-1) = 0 but then in such a way that its Jacobian is non-singular and the , 
equation f 2 @) = 0 is solvable for x2. 

We introduce the notation 

where operator (1.4) is defined in terms of operators (1.5), the first two of which are Lie derivatives, 
while the last acts only on L b 

*(‘) ’ 
time differentiation of the control input functions. 

In this notation, we have 

f:‘)d(f,)=O 9 j=o . k-l ,a ., (1.6) 

i, =-(-&y(f2))‘, L~(f2)=f,(x,,x2,u,...,u’s’) (1.7) 

Here relations (1.6) are first integrals of differential equations (1.7), and depend in the general case 
on the control inputs u and their time derivatives u, . . . , II@), 0 G s s k. If u first occurs explicitly in 
Lp(f2) = 0, then s = k -p. 

Thus, the DS (1.1) (1.2) may be represented by differential equations (1.1) and (1.7) on the invariant 
manifold defined by the first integrals (1.6). 

In principle, one can use invariants (1.6) to eliminate kn2 redundant variables and reduce the problem 
to a system of nr - (k - 1)~ ordinary differential equations in phase space. But we shall not follow that 
path. 

Both types of representation for DS require, in addition, appropriate initial or boundary conditions 
satisfying the first integrals (1.6): 

Lj(f,)l,=,=O, Lj(f,)l,=r=O, j=o ,..., k-1 (1.8) 

2. PROPER AND NON-PROPER DS 

The different representations of DS in the preceding section indicate that the behaviour of a DS may 
depend not only on the control input u but also on its time derivatives ti, ii, . . . , II(‘). Irrespective of 
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whether the differential-algebraic description (l.l), (1.2) includes e 
8 

licit dependence only on the input 
U, hidden effects depending on the time derivatives ri, ii, . . . , u may appear, as is obvious from 
representation (l.l), (1.6) and (1.7). Any method for constructing controls must therefore make 
allowance for this fact, which does not arise in the usual phase-space treatment. In discrete time systems 
the unusual situation just outlined is cleared up [3] by introducing the concept of “causality,” which 
unfortunately has no analogue in continuous-time systems. 

For continuous-time systems, we introduce the concept of “properness,” corresponding to the 
definition of the frequency domain for linear systems. The DS (l.l), (1.2) is said to be proper if the 
solution xi(t), x2(t) depends only on u(t) (and possibly on integrals of u(f)) but not on u(f), ii(t), . . . , 
u@l)(t). Otherwise, the system is said to be no?-proper. 

This definition does not necessarily involve u ’ (t), as might be expected on the basis of (1.7), because 
Lk-'(f2) = 0 is a first integral of system (1.7) which depends only on u(t), u(t), ii(t), . . . , u(‘- j(t). Note 
that a DS of index k = 1 is always proper. Non-proper systems crop up only when k 3 2. In addition, 
it follows from (1.6) and (1.7) and the definition of “properness” that a DS of index k is proper if and 
only if 

--&,(f2))=0, i=o,..., k-2 

Then the first integrals (1.6) become 

Lj(f2)ZLjfi(f2)Ef*,j(XI)=09 j=O,....k-2 (2.1) 

P'<f*>= L;;'(f2)=f*.&_,( x x ,, 29 u)=O (2.2) 

They do not depend on time derivatives of the control input, and the condition s = 1 is satisfied. 
A stronger condition is also considered: the DS (1.1) is strictly proper if it is proper and, additionally, 

f2,k_1 depends on x1 but not on II, so that s = 0 and function (2.2) becomes 

f*,,_,(x,.x,)=O (2.3) 

Properness plays an important role for Pontryagin’s maximum principle to be applicable in its standard 
form. 

As an example of a proper DS, we will describe a typical simple control mechanism consisting of two 
masses attached at the ends of springs (linear oscillators) and connected by a solid rod of variable length, 
which is regarded as the control input (see Fig. 1). 

Considering the variables z1 and z2 as the displacements of the masses from their static equilibrium 
positions zio and z20, we can write Lagrange’s equations of the second kind in the form 

. . 
VI +cIzI = h, m2i’2+c2zZ =-h, z, -z2+u=0 

Equations (2.4) take the descriptor form (1.1) (1.2) if we introduce the notation 

(2.4) 

XI =[z,9z2,i,&lF, x2 =[hl 

f, = 
[ 
&i,,-clz, +h,_Clz2 -h 

F 

ml ml "2 m2 1 

f2 =[z, -z2 +ul 

By the change variables 

X 
2 2 

I = -(m,z, +m2z2), x;? = - 
"I+m2 ml+"2 

(ml4 +qi2) 

Cl y3=-- ZI +%z2 + 
m, +m 
-h, Ea =i, -i2, Fs = Zl - z2 

ml "2 mlm2 

(2.5) 

we transform the system to Weierstrass-Kronecker canonical form [3], which leads to the solution of 
Eqs (2.4) 
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Fig. 1 

ZI 0) = +_ *U(t), 2,(f)=~x&)+---lf- u(t) 
I 2 4 +m2 

h(t) = clmz - c2m1 q(t) _ elmi + cam: 

Xm, +m2) (ml + m2)2 
u(t)-Xii(r) 

“I +m2 

(2.6) 

(2.8) 

where Zi(t) satisfies the ordinary differential equation 

8,(t)+- 
Cl + c2 - 

mi +m2 
x,(t) = 2 c’m2 - c2m’ u(t) 

(m, +m2)’ 

Obviously, the solution depends on C(t) (2.7) and on ii(t) (2.8). From a mechanical standpoint, this 
result is not surprising. If displacements by virtue of the last of equations (2.4) depend on u(f), then 
velocities (2.7) will depend on G(t) and the reaction of constraint (2.8) will depend on the acceleration 
ii(t). Nevertheless, system (2.4) is non-proper. 

In general, it is not difficult to show that Lagrangian systems are proper if and only if the control 
input vector appears in differential equation (1.1) but not in algebraic equations (1.2), that is, in the 
case of ordinary control by force or torque. But if the control input u(t), via algebraic equations (1.2), 
constrains the displacement of the system, as in the example just considered, the behaviour of the system 
turns out to be non-proper. 

3. OPTIMAL CONTROL (GENERAL PRINCIPLES) 

To derive the necessary conditions for the optimal control in a DS with performance criterion (1.3), 
using the well-known methods of the calculus of variations or Pontryagin’s maximum principle [15-171, 
the most convenient description for a DS is a system consisting of differential equations (1.1) and (1.7) 
and additional boundary conditions (1.8). In the case of a non-proper system, correct treatment of the 
time derivatives G(t), ii(t), . . . , d”)(t). is necessary. This problem is easily solved by introducing the 
extended set of variables 

5, = u, g2 = li ,...) 5, = u(+‘), v = &) 

which define a multi-dimensional integrator chain 

(3.1) 

i, = g2. & = 53,..., is_, = &,a is = v (3.2) 

The idea of introducing integrator chains (3.1), (3.2) for a correct description of the influence of the 
control input has been used to construct a linear-quadratic optimal control of a non-proper linear DS. 
While the usual equations (see Eqs (4.3) and (4.4) below) remain valid in this case, the correct solution 
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of a two-point boundary-value problem is greatly simplified by introducing integrator chain (3.1), (3.2). 
The so-called Riccati approach may also be applied correctly only by introducing the extension (3.1), 
(3.2). For non-proper systems, the amplification matrix for dynamical feedback is determined by a Riccati 
matrix equation for the extended dynamical system. The details of this approach are set out in [13,14]. 

With additional variables, the optimal control problem becomes the following. It is required to 
minimize the performance criterion (1.3) 

T 

J = J fO(x,,x2,&j,W* min 

0 

g tll presence of differential constraints corresponding to the extended dynamical system (1.1) (1.6), 

x, =lf,(x,.x*.5,). fz(x,,x*&,....v). 52r...,5,JlT 

where the extended phase vector is defined as 

(3.3) 

x, =[x,,x2.5,, . . . . &IT (3.4) 

and the vector v(t) is a new (fictitious) control input. The original constraint on the control, u E U, is 
now replaced by a phase constraint Y$ E U. The given geometrical boundary conditions must be 
supplemented by conditions (1 .S). 

Introducing Lagrange multipliers hi, x2, JI1, Jlz, . . . , 6 into the extended formulation of the problem, 
we obtain the extended performance criterion 

(3.5) 

and the Hamiltonian 

An optimal control for a non-proper DS of general form, in the unconstrained case (U = R’), is now 
constructed using the classical calculus of variations; if there are constraints (U c I?‘), Pontryagin’s 
maximum principle is used. 

This general approach may be simplified for unconstrained optimization problems and for proper 
systems. 

4. THE OPTIMIZATION PROBLEM WHEN THERE ARE 
NO CONSTRAINTS ON THE CONTROL 

(THE CALCULUS OF VARIATIONS) 

Let us consider performance criterion (3.5) in greater detail, in particular, its third term 

Introducing q * = k:F-’ after integrating by parts taking Eqs (1.6)-(1.8) into consideration, we obtain 

J, = (-l)k i q’k’Tf2dt 
0 

Putting hz = -(-l)kq(k), we reduce the performance criterion to the form 

~~=i [fo+xr(ir,-f,)-~:f2+~:(~,-s2)+...+Jr~(~-v)ldr~min (4-l) 
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First writing out Euler’s equation for v, we obtain il~$ = 0. Euler’s equations for E2, . . . , i& yield 
equalities vi = 0 (i = 1, . . . , s - 1). Using the reduced Hamiltonian 

H,=H,(x,,xZ,u,A,rA2)=A:fi+A:f*-f0 (4.2) 

we can express the remaining Euler’s equations in the form 

. 2!!!L AI 
r 

ax, l 

o+ 
2 

O=-?!& 

(4.3) 

(4.4) 

The conjugate variables Al and A2 satisfy the differential-algebraic equations (4.3), and the optimal 
control is determined from Eq. (4.4); it generally depends on xi, x2, Al, Ap,. 
The boundary conditions for the conjugate variables are defined according to the usual rules and 

will not be considered here explicitly. 
The boundary conditions for the conjugate variables are defined according to the usual rules and 

will not be considered here explicitly. 
The procedure for solving unconstrained optimization problems is to solve a two-point boundary- 

value problem for two subsystems of differential-algebraic equations: subsystem (l.l), (1.2) and sub- 
system (4.3), in which the control is determined from Eq. (4.4). Thus an unconstrained optimization 
problem is solved using the standard approach of the calculus of variations, irrespective of whether the 
dynamical system (l.l), (1.2) is proper or not. 

5. OPTIMIZATION PROCEDURE FOR A PROPER DS WITH 
CONSTRAINTS ON THE CONTROL 

Proper DS are characterized by the invariants (2.1) and (2.2) with s = 1. Consequently, the extended 
set of variables (3.1) includes only 

g=u, v=u:e=v (5.1) 

Then performance criterion (4.1) (transformed as a result of integration by parts) becomes 

T 

J,=j &+A:(& -f,)-A:f2+JIT(&-v)]dt*min 
0 

leading to a Hamiltonian HP = Arfl + ATf2 + JIT v -f. and to the necessary conditions of Pontryagin’s 
maximum principle 

AI =-A, = 
aH o aH, . aH, H 

ax, -z’ e=-ag’ Pm= =maxHp:#v+max 
” ” 

If in addition the DS is strictly proper, so that s = 0, and condition (2.3) is satisfied, then extension 
(5.1) is not needed at all, and we again obtain the previously presented Hamiltonian H, (4.2), yielding 
necessary conditions 

aH 
A, =-----I_, 

ax, 
) Hrm, = max H, 

usu 

Consequently, the constrained optimization problem for a strictly proper DS is solved by the usual means, 
employing Pontryagin’s maximum principle. 
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6. OPTIMIZATION PROCEDURE FOR A NON-PROPER DS WITH 
CONSTRAINTS ON THE CONTROL 

For a non-proper DS (l.l), (1.2) one can apply only the general approach mentioned in Section 3. For 
extended system (3.3) with Hamiltonian Hnp, associated with performance criterion (4.1) 

H, =A;f, +A;f, +&, +...+JI;v- f. 

the necessary conditions of the maximum principle have the form 

& = --, afhp au, . aH,, . a4p 
ax, 

()=-- 
ax, ’ 

~, =- aS, , pi =-a5i=-~i_l, i=2,.‘.,s (6.1) 

H np max =max H,,,,:IJJTv+ max 
” ” 

Consequently, for non-proper DS, the optimization procedure must also involve higher-order 
time derivatives of the control inputs, in accordance with integrator chain (3.1), (3.2). In addition, the 
constraint on the control u E U must be treated as a constraint c1 E U in the extended phase 
space (3.4). In practice, it is difficult to realize the maximum condition (6.2), because the constraint on 
v is not known in advance. One must therefore consider the appropriate formulation of the optimization 
problem. Condition (6.2) gives a hint that the problem may not have been correctly posed from the 
start. In many applications, the substance of the problem is sometimes such that a constraint 
v E V/makes more sense than u E U. If the condition u E U is replaced by v E V, then conditions (6.1) 
and (6.2) lead to an ordinary optimization procedure. Then, in order to obtain an optimal (fictitious) 
control v(t), one must consider a two-point boundary-value problem. In accordance with integrator chain 
(3.1), (3.2), this control will not be static (proportional) but dynamic. 

For the control mechanism of Section 2, one needs an integrator chain 

51 =u, &=il, v=ii: Q =& i&=v (6.3) 

Consequently, the maximum principle must be applied to system (1.1) extended by the addition of 
Eqs (2.5) and (6.3). The total dimensionality of the extended system is n + s = 5 + 2 = 7. One then 
has to solve the conjugate equations (6.1) and maximum condition (6.2). Unconstrained optimization 
problems with a quadratic performance criterion were considered in [5]. 
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